Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GANG-MAM: GAN based enGine for Modifying Android Malware (2109.13297v1)

Published 27 Sep 2021 in cs.CR, cs.AI, cs.LG, and cs.NE

Abstract: Malware detectors based on machine learning are vulnerable to adversarial attacks. Generative Adversarial Networks (GAN) are architectures based on Neural Networks that could produce successful adversarial samples. The interest towards this technology is quickly growing. In this paper, we propose a system that produces a feature vector for making an Android malware strongly evasive and then modify the malicious program accordingly. Such a system could have a twofold contribution: it could be used to generate datasets to validate systems for detecting GAN-based malware and to enlarge the training and testing dataset for making more robust malware classifiers.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.