Emergent Mind

DOODLER: Determining Out-Of-Distribution Likelihood from Encoder Reconstructions

(2109.13237)
Published Sep 27, 2021 in cs.LG , cs.CV , and stat.ML

Abstract

Deep Learning models possess two key traits that, in combination, make their use in the real world a risky prospect. One, they do not typically generalize well outside of the distribution for which they were trained, and two, they tend to exhibit confident behavior regardless of whether or not they are producing meaningful outputs. While Deep Learning possesses immense power to solve realistic, high-dimensional problems, these traits in concert make it difficult to have confidence in their real-world applications. To overcome this difficulty, the task of Out-Of-Distribution (OOD) Detection has been defined, to determine when a model has received an input from outside of the distribution for which it is trained to operate. This paper introduces and examines a novel methodology, DOODLER, for OOD Detection, which directly leverages the traits which result in its necessity. By training a Variational Auto-Encoder (VAE) on the same data as another Deep Learning model, the VAE learns to accurately reconstruct In-Distribution (ID) inputs, but not to reconstruct OOD inputs, meaning that its failure state can be used to perform OOD Detection. Unlike other work in the area, DOODLER requires only very weak assumptions about the existence of an OOD dataset, allowing for more realistic application. DOODLER also enables pixel-wise segmentations of input images by OOD likelihood, and experimental results show that it matches or outperforms methodologies that operate under the same constraints.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.