Papers
Topics
Authors
Recent
2000 character limit reached

TSM: Temporal Shift Module for Efficient and Scalable Video Understanding on Edge Device (2109.13227v1)

Published 27 Sep 2021 in cs.CV, cs.AR, and cs.LG

Abstract: The explosive growth in video streaming requires video understanding at high accuracy and low computation cost. Conventional 2D CNNs are computationally cheap but cannot capture temporal relationships; 3D CNN-based methods can achieve good performance but are computationally intensive. In this paper, we propose a generic and effective Temporal Shift Module (TSM) that enjoys both high efficiency and high performance. The key idea of TSM is to shift part of the channels along the temporal dimension, thus facilitate information exchanged among neighboring frames. It can be inserted into 2D CNNs to achieve temporal modeling at zero computation and zero parameters. TSM offers several unique advantages. Firstly, TSM has high performance; it ranks the first on the Something-Something leaderboard upon submission. Secondly, TSM has high efficiency; it achieves a high frame rate of 74fps and 29fps for online video recognition on Jetson Nano and Galaxy Note8. Thirdly, TSM has higher scalability compared to 3D networks, enabling large-scale Kinetics training on 1,536 GPUs in 15 minutes. Lastly, TSM enables action concepts learning, which 2D networks cannot model; we visualize the category attention map and find that spatial-temporal action detector emerges during the training of classification tasks. The code is publicly available at https://github.com/mit-han-lab/temporal-shift-module.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.