Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bayesian deep learning of affordances from RGB images (2109.12845v1)

Published 27 Sep 2021 in cs.CV and cs.RO

Abstract: Autonomous agents, such as robots or intelligent devices, need to understand how to interact with objects and its environment. Affordances are defined as the relationships between an agent, the objects, and the possible future actions in the environment. In this paper, we present a Bayesian deep learning method to predict the affordances available in the environment directly from RGB images. Based on previous work on socially accepted affordances, our model is based on a multiscale CNN that combines local and global information from the object and the full image. However, previous works assume a deterministic model, but uncertainty quantification is fundamental for robust detection, affordance-based reason, continual learning, etc. Our Bayesian model is able to capture both the aleatoric uncertainty from the scene and the epistemic uncertainty associated with the model and previous learning process. For comparison, we estimate the uncertainty using two state-of-the-art techniques: Monte Carlo dropout and deep ensembles. We also compare different types of CNN encoders for feature extraction. We have performed several experiments on an affordance database on socially acceptable behaviours and we have shown improved performance compared with previous works. Furthermore, the uncertainty estimation is consistent with the the type of objects and scenarios. Our results show a marginal better performance of deep ensembles, compared to MC-dropout on the Brier score and the Expected Calibration Error.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.