Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effect Of Personalized Calibration On Gaze Estimation Using Deep-Learning (2109.12801v1)

Published 27 Sep 2021 in cs.CV

Abstract: With the increase in computation power and the development of new state-of-the-art deep learning algorithms, appearance-based gaze estimation is becoming more and more popular. It is believed to work well with curated laboratory data sets, however it faces several challenges when deployed in real world scenario. One such challenge is to estimate the gaze of a person about which the Deep Learning model trained for gaze estimation has no knowledge about. To analyse the performance in such scenarios we have tried to simulate a calibration mechanism. In this work we use the MPIIGaze data set. We trained a multi modal convolutional neural network and analysed its performance with and without calibration and this evaluation provides clear insights on how calibration improved the performance of the Deep Learning model in estimating gaze in the wild.

Summary

We haven't generated a summary for this paper yet.