Effective Use of Graph Convolution Network and Contextual Sub-Tree forCommodity News Event Extraction (2109.12781v1)
Abstract: Event extraction in commodity news is a less researched area as compared to generic event extraction. However, accurate event extraction from commodity news is useful in abroad range of applications such as under-standing event chains and learning event-event relations, which can then be used for commodity price prediction. The events found in commodity news exhibit characteristics different from generic events, hence posing a unique challenge in event extraction using existing methods. This paper proposes an effective use of Graph Convolutional Networks(GCN) with a pruned dependency parse tree, termed contextual sub-tree, for better event ex-traction in commodity news. The event ex-traction model is trained using feature embed-dings from ComBERT, a BERT-based masked LLM that was produced through domain-adaptive pre-training on a commodity news corpus. Experimental results show the efficiency of the proposed solution, which out-performs existing methods with F1 scores as high as 0.90. Furthermore, our pre-trained LLM outperforms GloVe by 23%, and BERT and RoBERTa by 7% in terms of argument roles classification. For the goal of re-producibility, the code and trained models are made publicly available1.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.