Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Defect Prediction Guided Search-Based Software Testing (2109.12645v1)

Published 26 Sep 2021 in cs.SE

Abstract: Today, most automated test generators, such as search-based software testing (SBST) techniques focus on achieving high code coverage. However, high code coverage is not sufficient to maximise the number of bugs found, especially when given a limited testing budget. In this paper, we propose an automated test generation technique that is also guided by the estimated degree of defectiveness of the source code. Parts of the code that are likely to be more defective receive more testing budget than the less defective parts. To measure the degree of defectiveness, we leverage Schwa, a notable defect prediction technique. We implement our approach into EvoSuite, a state of the art SBST tool for Java. Our experiments on the Defects4J benchmark demonstrate the improved efficiency of defect prediction guided test generation and confirm our hypothesis that spending more time budget on likely defective parts increases the number of bugs found in the same time budget.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.