Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Doubly-pipelined, Dual-root Reduction-to-all Algorithm and Implementation (2109.12626v3)

Published 26 Sep 2021 in cs.DC

Abstract: We discuss a simple, binary tree-based algorithm for the collective allreduce (reduction-to-all, MPI_Allreduce) operation for parallel systems consisting of $p$ suitably interconnected processors. The algorithm can be doubly pipelined to exploit bidirectional (telephone-like) communication capabilities of the communication system. In order to make the algorithm more symmetric, the processors are organized into two rooted trees with communication between the two roots. For each pipeline block, each non-leaf processor takes three communication steps, consisting in receiving and sending from and to the two children, and sending and receiving to and from the root. In a round-based, uniform, linear-cost communication model in which simultaneously sending and receiving $n$ data elements takes time $\alpha+\beta n$ for system dependent constants $\alpha$ (communication start-up latency) and $\beta$ (time per element), the time for the allreduce operation on vectors of $m$ elements is $O(\log p+\sqrt{m\log p})+3\beta m$ by suitable choice of the pipeline block size. We compare the performance of an implementation in MPI to similar reduce followed by broadcast algorithms, and the native MPI_Allreduce collective on a modern, small $36\times 32$ processor cluster. With proper choice of the number of pipeline blocks, it is possible to achieve better performance than pipelined algorithms that do not exploit bidirectional communication.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube