Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dynamic Sequential Graph Learning for Click-Through Rate Prediction (2109.12541v1)

Published 26 Sep 2021 in cs.IR and cs.LG

Abstract: Click-through rate prediction plays an important role in the field of recommender system and many other applications. Existing methods mainly extract user interests from user historical behaviors. However, behavioral sequences only contain users' directly interacted items, which are limited by the system's exposure, thus they are often not rich enough to reflect all the potential interests. In this paper, we propose a novel method, named Dynamic Sequential Graph Learning (DSGL), to enhance users or items' representations by utilizing collaborative information from the local sub-graphs associated with users or items. Specifically, we design the Dynamic Sequential Graph (DSG), i.e., a lightweight ego subgraph with timestamps induced from historical interactions. At every scoring moment, we construct DSGs for the target user and the candidate item respectively. Based on the DSGs, we perform graph convolutional operations iteratively in a bottom-up manner to obtain the final representations of the target user and the candidate item. As for the graph convolution, we design a Time-aware Sequential Encoding Layer that leverages the interaction time information as well as temporal dependencies to learn evolutionary user and item dynamics. Besides, we propose a Target-Preference Dual Attention Layer, composed of a preference-aware attention module and a target-aware attention module, to automatically search for parts of behaviors that are relevant to the target and alleviate the noise from unreliable neighbors. Results on real-world CTR prediction benchmarks demonstrate the improvements brought by DSGL.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.