Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Anytime Game-Theoretic Planning with Active Reasoning About Humans' Latent States for Human-Centered Robots (2109.12490v1)

Published 26 Sep 2021 in cs.RO

Abstract: A human-centered robot needs to reason about the cognitive limitation and potential irrationality of its human partner to achieve seamless interactions. This paper proposes an anytime game-theoretic planner that integrates iterative reasoning models, a partially observable Markov decision process, and chance-constrained Monte-Carlo belief tree search for robot behavioral planning. Our planner enables a robot to safely and actively reason about its human partner's latent cognitive states (bounded intelligence and irrationality) in real-time to maximize its utility better. We validate our approach in an autonomous driving domain where our behavioral planner and a low-level motion controller hierarchically control an autonomous car to negotiate traffic merges. Simulations and user studies are conducted to show our planner's effectiveness.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.