Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Structure-preserving model order reduction of Hamiltonian systems (2109.12367v1)

Published 25 Sep 2021 in math.NA and cs.NA

Abstract: We discuss the recent developments of projection-based model order reduction (MOR) techniques targeting Hamiltonian problems. Hamilton's principle completely characterizes many high-dimensional models in mathematical physics, resulting in rich geometric structures, with examples in fluid dynamics, quantum mechanics, optical systems, and epidemiological models. MOR reduces the computational burden associated with the approximation of complex systems by introducing low-dimensional surrogate models, enabling efficient multi-query numerical simulations. However, standard reduction approaches do not guarantee the conservation of the delicate dynamics of Hamiltonian problems, resulting in reduced models plagued by instability or accuracy loss over time. By approaching the reduction process from the geometric perspective of symplectic manifolds, the resulting reduced models inherit stability and conservation properties of the high-dimensional formulations. We first introduce the general principles of symplectic geometry, including symplectic vector spaces, Darboux' theorem, and Hamiltonian vector fields. These notions are then used as a starting point to develop different structure-preserving reduced basis (RB) algorithms, including SVD-based approaches and greedy techniques. We conclude the review by addressing the reduction of problems that are not linearly reducible or in a non-canonical Hamiltonian form.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.