Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedProc: Prototypical Contrastive Federated Learning on Non-IID data (2109.12273v1)

Published 25 Sep 2021 in cs.LG and cs.DC

Abstract: Federated learning allows multiple clients to collaborate to train high-performance deep learning models while keeping the training data locally. However, when the local data of all clients are not independent and identically distributed (i.e., non-IID), it is challenging to implement this form of efficient collaborative learning. Although significant efforts have been dedicated to addressing this challenge, the effect on the image classification task is still not satisfactory. In this paper, we propose FedProc: prototypical contrastive federated learning, which is a simple and effective federated learning framework. The key idea is to utilize the prototypes as global knowledge to correct the local training of each client. We design a local network architecture and a global prototypical contrastive loss to regulate the training of local models, which makes local objectives consistent with the global optima. Eventually, the converged global model obtains a good performance on non-IID data. Experimental results show that, compared to state-of-the-art federated learning methods, FedProc improves the accuracy by $1.6\%\sim7.9\%$ with acceptable computation cost.

Citations (125)

Summary

We haven't generated a summary for this paper yet.