Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Stereopsis from Geometric Synthesis for 6D Object Pose Estimation (2109.12266v1)

Published 25 Sep 2021 in cs.CV and cs.LG

Abstract: Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods, mostly due to the lack of 3D information. To make up this gap, this paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting. By constructing a geometric volume in the 3D space, we combine the features from two adjacent images to the same 3D space. Then a network is trained to learn the distribution of the position of object keypoints in the volume, and a robust soft RANSAC solver is deployed to solve the pose in closed form. To balance accuracy and cost, we propose a coarse-to-fine framework to improve the performance in an iterative way. The experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes, especially in serious occlusion situations.

Summary

We haven't generated a summary for this paper yet.