Papers
Topics
Authors
Recent
2000 character limit reached

Parameterized Channel Normalization for Far-field Deep Speaker Verification (2109.12056v1)

Published 24 Sep 2021 in cs.SD, cs.AI, and eess.AS

Abstract: We address far-field speaker verification with deep neural network (DNN) based speaker embedding extractor, where mismatch between enrollment and test data often comes from convolutive effects (e.g. room reverberation) and noise. To mitigate these effects, we focus on two parametric normalization methods: per-channel energy normalization (PCEN) and parameterized cepstral mean normalization (PCMN). Both methods contain differentiable parameters and thus can be conveniently integrated to, and jointly optimized with the DNN using automatic differentiation methods. We consider both fixed and trainable (data-driven) variants of each method. We evaluate the performance on Hi-MIA, a recent large-scale far-field speech corpus, with varied microphone and positional settings. Our methods outperform conventional mel filterbank features, with maximum of 33.5% and 39.5% relative improvement on equal error rate under matched microphone and mismatched microphone conditions, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.