Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Edge but not Least: Cross-View Graph Pooling (2109.11796v1)

Published 24 Sep 2021 in cs.LG and cs.AI

Abstract: Graph neural networks have emerged as a powerful model for graph representation learning to undertake graph-level prediction tasks. Various graph pooling methods have been developed to coarsen an input graph into a succinct graph-level representation through aggregating node embeddings obtained via graph convolution. However, most graph pooling methods are heavily node-centric and are unable to fully leverage the crucial information contained in global graph structure. This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information. The proposed Co-Pooling fuses pooled representations learnt from both node view and edge view. Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations. Co-Pooling has the advantage of handling various graphs with different types of node attributes. Extensive experiments on a total of 15 graph benchmark datasets validate the effectiveness of our proposed method, demonstrating its superior performance over state-of-the-art pooling methods on both graph classification and graph regression tasks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.