Papers
Topics
Authors
Recent
2000 character limit reached

Edge but not Least: Cross-View Graph Pooling (2109.11796v1)

Published 24 Sep 2021 in cs.LG and cs.AI

Abstract: Graph neural networks have emerged as a powerful model for graph representation learning to undertake graph-level prediction tasks. Various graph pooling methods have been developed to coarsen an input graph into a succinct graph-level representation through aggregating node embeddings obtained via graph convolution. However, most graph pooling methods are heavily node-centric and are unable to fully leverage the crucial information contained in global graph structure. This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information. The proposed Co-Pooling fuses pooled representations learnt from both node view and edge view. Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations. Co-Pooling has the advantage of handling various graphs with different types of node attributes. Extensive experiments on a total of 15 graph benchmark datasets validate the effectiveness of our proposed method, demonstrating its superior performance over state-of-the-art pooling methods on both graph classification and graph regression tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.