Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Parameter-free Reduction of the Estimation Bias in Deep Reinforcement Learning for Deterministic Policy Gradients (2109.11788v3)

Published 24 Sep 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Approximation of the value functions in value-based deep reinforcement learning induces overestimation bias, resulting in suboptimal policies. We show that when the reinforcement signals received by the agents have a high variance, deep actor-critic approaches that overcome the overestimation bias lead to a substantial underestimation bias. We first address the detrimental issues in the existing approaches that aim to overcome such underestimation error. Then, through extensive statistical analysis, we introduce a novel, parameter-free Deep Q-learning variant to reduce this underestimation bias in deterministic policy gradients. By sampling the weights of a linear combination of two approximate critics from a highly shrunk estimation bias interval, our Q-value update rule is not affected by the variance of the rewards received by the agents throughout learning. We test the performance of the introduced improvement on a set of MuJoCo and Box2D continuous control tasks and demonstrate that it considerably outperforms the existing approaches and improves the state-of-the-art by a significant margin.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.