Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Improved Frequent Directions Algorithm for Low-Rank Approximation via Block Krylov Iteration (2109.11703v2)

Published 24 Sep 2021 in cs.LG

Abstract: Frequent Directions, as a deterministic matrix sketching technique, has been proposed for tackling low-rank approximation problems. This method has a high degree of accuracy and practicality, but experiences a lot of computational cost for large-scale data. Several recent works on the randomized version of Frequent Directions greatly improve the computational efficiency, but unfortunately sacrifice some precision. To remedy such issue, this paper aims to find a more accurate projection subspace to further improve the efficiency and effectiveness of the existing Frequent Directions techniques. Specifically, by utilizing the power of Block Krylov Iteration and random projection technique, this paper presents a fast and accurate Frequent Directions algorithm named as r-BKIFD. The rigorous theoretical analysis shows that the proposed r-BKIFD has a comparable error bound with original Frequent Directions, and the approximation error can be arbitrarily small when the number of iterations is chosen appropriately. Extensive experimental results on both synthetic and real data further demonstrate the superiority of r-BKIFD over several popular Frequent Directions algorithms, both in terms of computational efficiency and accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.