Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate (2109.11694v2)

Published 23 Sep 2021 in math.NA and cs.NA

Abstract: We study a randomized quadrature algorithm to approximate the integral of periodic functions defined over the high-dimensional unit cube. Recent work by Kritzer, Kuo, Nuyens and Ullrich (2019) shows that rank-1 lattice rules with a randomly chosen number of points and good generating vector achieve almost the optimal order of the randomized error in weighted Korobov spaces, and moreover, that the error is bounded independently of the dimension if the weight parameters, $\gamma_j$, satisfy the summability condition $\sum_{j=1}{\infty}\gamma_j{1/\alpha}<\infty$, where $\alpha$ is a smoothness parameter. The argument is based on the existence result that at least half of the possible generating vectors yield almost the optimal order of the worst-case error in the same function spaces. In this paper we provide a component-by-component construction algorithm of such randomized rank-1 lattice rules, without any need to check whether the constructed generating vectors satisfy a desired worst-case error bound. Similarly to the above-mentioned work, we prove that our algorithm achieves almost the optimal order of the randomized error and that the error bound is independent of the dimension if the same condition $\sum_{j=1}{\infty}\gamma_j{1/\alpha}<\infty$ holds. We also provide analogous results for tent-transformed lattice rules for weighted half-period cosine spaces and for polynomial lattice rules in weighted Walsh spaces, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Josef Dick (75 papers)
  2. Takashi Goda (56 papers)
  3. Kosuke Suzuki (32 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.