Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discovering and Validating AI Errors With Crowdsourced Failure Reports (2109.11690v1)

Published 23 Sep 2021 in cs.HC and cs.LG

Abstract: AI systems can fail to learn important behaviors, leading to real-world issues like safety concerns and biases. Discovering these systematic failures often requires significant developer attention, from hypothesizing potential edge cases to collecting evidence and validating patterns. To scale and streamline this process, we introduce crowdsourced failure reports, end-user descriptions of how or why a model failed, and show how developers can use them to detect AI errors. We also design and implement Deblinder, a visual analytics system for synthesizing failure reports that developers can use to discover and validate systematic failures. In semi-structured interviews and think-aloud studies with 10 AI practitioners, we explore the affordances of the Deblinder system and the applicability of failure reports in real-world settings. Lastly, we show how collecting additional data from the groups identified by developers can improve model performance.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.