Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Algorithm for Generating Gap-Fill Multiple Choice Questions of an Expert System (2109.11421v1)

Published 17 Sep 2021 in cs.AI and cs.CL

Abstract: This research is aimed to propose an artificial intelligence algorithm comprising an ontology-based design, text mining, and natural language processing for automatically generating gap-fill multiple choice questions (MCQs). The simulation of this research demonstrated an application of the algorithm in generating gap-fill MCQs about software testing. The simulation results revealed that by using 103 online documents as inputs, the algorithm could automatically produce more than 16 thousand valid gap-fill MCQs covering a variety of topics in the software testing domain. Finally, in the discussion section of this paper we suggest how the proposed algorithm should be applied to produce gap-fill MCQs being collected in a question pool used by a knowledge expert system.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.