Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fuzzy Generalised Quantifiers for Natural Language in Categorical Compositional Distributional Semantics (2109.11227v1)

Published 23 Sep 2021 in cs.CL

Abstract: Recent work on compositional distributional models shows that bialgebras over finite dimensional vector spaces can be applied to treat generalised quantifiers for natural language. That technique requires one to construct the vector space over powersets, and therefore is computationally costly. In this paper, we overcome this problem by considering fuzzy versions of quantifiers along the lines of Zadeh, within the category of many valued relations. We show that this category is a concrete instantiation of the compositional distributional model. We show that the semantics obtained in this model is equivalent to the semantics of the fuzzy quantifiers of Zadeh. As a result, we are now able to treat fuzzy quantification without requiring a powerset construction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.