Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

IE-GAN: An Improved Evolutionary Generative Adversarial Network Using a New Fitness Function and a Generic Crossover Operator (2109.11078v3)

Published 25 Jul 2021 in cs.NE and cs.LG

Abstract: The training of generative adversarial networks (GANs) is usually vulnerable to mode collapse and vanishing gradients. The evolutionary generative adversarial network (E-GAN) attempts to alleviate these issues by optimizing the learning strategy with multiple loss functions. It uses a learning-based evolutionary framework, which develops new mutation operators specifically for general deep neural networks. However, the evaluation mechanism in the fitness function of E-GAN cannot truly reflect the adaptability of individuals to their environment, leading to an inaccurate assessment of the diversity of individuals. Moreover, the evolution step of E-GAN only contains mutation operators without considering the crossover operator jointly, isolating the superior characteristics among individuals. To address these issues, we propose an improved E-GAN framework called IE-GAN, which introduces a new fitness function and a generic crossover operator. In particular, the proposed fitness function, from an objective perspective, can model the evolutionary process of individuals more accurately. The crossover operator, which has been commonly adopted in evolutionary algorithms, can enable offspring to imitate the superior gene expression of their parents through knowledge distillation. Experiments on various datasets demonstrate the effectiveness of our proposed IE-GAN in terms of the quality of the generated samples and time efficiency.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub