Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Downsample for Segmentation of Ultra-High Resolution Images (2109.11071v2)

Published 22 Sep 2021 in cs.CV and cs.LG

Abstract: Many computer vision systems require low-cost segmentation algorithms based on deep learning, either because of the enormous size of input images or limited computational budget. Common solutions uniformly downsample the input images to meet memory constraints, assuming all pixels are equally informative. In this work, we demonstrate that this assumption can harm the segmentation performance because the segmentation difficulty varies spatially. We combat this problem by introducing a learnable downsampling module, which can be optimised together with the given segmentation model in an end-to-end fashion. We formulate the problem of training such downsampling module as optimisation of sampling density distributions over the input images given their low-resolution views. To defend against degenerate solutions (e.g. over-sampling trivial regions like the backgrounds), we propose a regularisation term that encourages the sampling locations to concentrate around the object boundaries. We find the downsampling module learns to sample more densely at difficult locations, thereby improving the segmentation performance. Our experiments on benchmarks of high-resolution street view, aerial and medical images demonstrate substantial improvements in terms of efficiency-and-accuracy trade-off compared to both uniform downsampling and two recent advanced downsampling techniques.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com