Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Finding Facial Forgery Artifacts with Parts-Based Detectors (2109.10688v1)

Published 21 Sep 2021 in cs.CV

Abstract: Manipulated videos, especially those where the identity of an individual has been modified using deep neural networks, are becoming an increasingly relevant threat in the modern day. In this paper, we seek to develop a generalizable, explainable solution to detecting these manipulated videos. To achieve this, we design a series of forgery detection systems that each focus on one individual part of the face. These parts-based detection systems, which can be combined and used together in a single architecture, meet all of our desired criteria - they generalize effectively between datasets and give us valuable insights into what the network is looking at when making its decision. We thus use these detectors to perform detailed empirical analysis on the FaceForensics++, Celeb-DF, and Facebook Deepfake Detection Challenge datasets, examining not just what the detectors find but also collecting and analyzing useful related statistics on the datasets themselves.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.