Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MVM3Det: A Novel Method for Multi-view Monocular 3D Detection (2109.10473v1)

Published 22 Sep 2021 in cs.CV

Abstract: Monocular 3D object detection encounters occlusion problems in many application scenarios, such as traffic monitoring, pedestrian monitoring, etc., which leads to serious false negative. Multi-view object detection effectively solves this problem by combining data from different perspectives. However, due to label confusion and feature confusion, the orientation estimation of multi-view 3D object detection is intractable, which is important for object tracking and intention prediction. In this paper, we propose a novel multi-view 3D object detection method named MVM3Det which simultaneously estimates the 3D position and orientation of the object according to the multi-view monocular information. The method consists of two parts: 1) Position proposal network, which integrates the features from different perspectives into consistent global features through feature orthogonal transformation to estimate the position. 2) Multi-branch orientation estimation network, which introduces feature perspective pooling to overcome the two confusion problems during the orientation estimation. In addition, we present a first dataset for multi-view 3D object detection named MVM3D. Comparing with State-Of-The-Art (SOTA) methods on our dataset and public dataset WildTrack, our method achieves very competitive results.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.