Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multilingual Document-Level Translation Enables Zero-Shot Transfer From Sentences to Documents (2109.10341v2)

Published 21 Sep 2021 in cs.CL and cs.LG

Abstract: Document-level neural machine translation (DocNMT) achieves coherent translations by incorporating cross-sentence context. However, for most language pairs there's a shortage of parallel documents, although parallel sentences are readily available. In this paper, we study whether and how contextual modeling in DocNMT is transferable via multilingual modeling. We focus on the scenario of zero-shot transfer from teacher languages with document level data to student languages with no documents but sentence level data, and for the first time treat document-level translation as a transfer learning problem. Using simple concatenation-based DocNMT, we explore the effect of 3 factors on the transfer: the number of teacher languages with document level data, the balance between document and sentence level data at training, and the data condition of parallel documents (genuine vs. backtranslated). Our experiments on Europarl-7 and IWSLT-10 show the feasibility of multilingual transfer for DocNMT, particularly on document-specific metrics. We observe that more teacher languages and adequate data balance both contribute to better transfer quality. Surprisingly, the transfer is less sensitive to the data condition, where multilingual DocNMT delivers decent performance with either backtranslated or genuine document pairs.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube