Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Off-line approximate dynamic programming for the vehicle routing problem with a highly variable customer basis and stochastic demands (2109.10200v2)

Published 21 Sep 2021 in math.OC and cs.AI

Abstract: We study a stochastic variant of the vehicle routing problem arising in the context of domestic donor collection services. The problem we consider combines the following attributes. Customers requesting services are variable, in the sense that the customers are stochastic but are not restricted to a predefined set, as they may appear anywhere in a given service area. Furthermore, demand volumes are stochastic and observed upon visiting the customer. The objective is to maximize the expected served demands while meeting vehicle capacity and time restrictions. We call this problem the VRP with a highly Variable Customer basis and Stochastic Demands (VRP-VCSD). For this problem, we first propose a Markov Decision Process (MDP) formulation representing the classical centralized decision-making perspective where one decision-maker establishes the routes of all vehicles. While the resulting formulation turns out to be intractable, it provides us with the ground to develop a new MDP formulation, which we call partially decentralized. In this formulation, the action-space is decomposed by vehicle. However, the decentralization is incomplete as we enforce identical vehicle-specific policies while optimizing the collective reward. We propose several strategies to reduce the dimension of the state and action spaces associated with the partially decentralized formulation. These yield a considerably more tractable problem, which we solve via Reinforcement Learning. In particular, we develop a Q-learning algorithm called DecQN, featuring state-of-the-art acceleration techniques. We conduct a thorough computational analysis. Results show that DecQN considerably outperforms three benchmark policies. Moreover, we show that our approach can compete with specialized methods developed for the particular case of the VRP-VCSD, where customer locations and expected demands are known in advance.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.