Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Transferability of Graph Neural Networks: an Extended Graphon Approach (2109.10096v2)

Published 21 Sep 2021 in cs.LG, cs.NA, and math.NA

Abstract: We study spectral graph convolutional neural networks (GCNNs), where filters are defined as continuous functions of the graph shift operator (GSO) through functional calculus. A spectral GCNN is not tailored to one specific graph and can be transferred between different graphs. It is hence important to study the GCNN transferability: the capacity of the network to have approximately the same repercussion on different graphs that represent the same phenomenon. Transferability ensures that GCNNs trained on certain graphs generalize if the graphs in the test set represent the same phenomena as the graphs in the training set. In this paper, we consider a model of transferability based on graphon analysis. Graphons are limit objects of graphs, and, in the graph paradigm, two graphs represent the same phenomenon if both approximate the same graphon. Our main contributions can be summarized as follows: 1) we prove that any fixed GCNN with continuous filters is transferable under graphs that approximate the same graphon, 2) we prove transferability for graphs that approximate unbounded graphon shift operators, which are defined in this paper, and, 3) we obtain non-asymptotic approximation results, proving linear stability of GCNNs. This extends current state-of-the-art results which show asymptotic transferability for polynomial filters under graphs that approximate bounded graphons.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.