Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Kernel-Smoothed Machine Translation with Retrieved Examples (2109.09991v2)

Published 21 Sep 2021 in cs.CL

Abstract: How to effectively adapt neural machine translation (NMT) models according to emerging cases without retraining? Despite the great success of neural machine translation, updating the deployed models online remains a challenge. Existing non-parametric approaches that retrieve similar examples from a database to guide the translation process are promising but are prone to overfit the retrieved examples. In this work, we propose to learn Kernel-Smoothed Translation with Example Retrieval (KSTER), an effective approach to adapt neural machine translation models online. Experiments on domain adaptation and multi-domain machine translation datasets show that even without expensive retraining, KSTER is able to achieve improvement of 1.1 to 1.5 BLEU scores over the best existing online adaptation methods. The code and trained models are released at https://github.com/jiangqn/KSTER.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.