Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Unified Approach of Detecting Misleading Images via Tracing its Instances on Web and Analysing its Past Context for the Verification of Content (2109.09929v1)

Published 21 Sep 2021 in cs.SI

Abstract: The verification of multimedia content over social media is one of the challenging and crucial issues in the current scenario and gaining prominence in an age where user-generated content and online social web platforms are the leading sources in shaping and propagating news stories. As these sources allow users to share their opinions without restriction, opportunistic users often post misleading/ unreliable content on social media such as Twitter, Facebook, etc. At present, to lure users towards the news story, the text is often attached with some multimedia content (images/videos/audios). Verifying these contents to maintain the credibility and reliability of social media information is of paramount importance. Motivated by this, we proposed a generalized system that supports the automatic classification of images into credible or misleading. In this paper, we investigated machine learning-based as well as deep learning-based approaches utilized to verify misleading multimedia content, where the available image traces are used to identify the credibility of the content. The experiment is performed on the real-world dataset (Media-eval-2015 dataset) collected from Twitter. It also demonstrates the efficiency of our proposed approach and features using both Machine and Deep Learning Model (Bi-directional LSTM). The experiment result reveals that the Microsoft bings image search engine is quite effective in retrieving titles and performs better than our study's Google image search engine. It also shows that gathering clues from attached multimedia content (image) is more effective than detecting only posted content-based features.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.