Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Clique-Based Separators for Geometric Intersection Graphs (2109.09874v1)

Published 20 Sep 2021 in cs.CG

Abstract: Let $F$ be a set of $n$ objects in the plane and let $G(F)$ be its intersection graph. A balanced clique-based separator of $G(F)$ is a set $S$ consisting of cliques whose removal partitions $G(F)$ into components of size at most $\delta n$, for some fixed constant $\delta<1$. The weight of a clique-based separator is defined as $\sum_{C\in S}\log (|C|+1)$. Recently De Berg et al. (SICOMP 2020) proved that if $S$ consists of convex fat objects, then $G(F)$ admits a balanced clique-based separator of weight $O(\sqrt{n})$. We extend this result in several directions, obtaining the following results. Map graphs admit a balanced clique-based separator of weight $O(\sqrt{n})$, which is tight in the worst case. Intersection graphs of pseudo-disks admit a balanced clique-based separator of weight $O(n{2/3}\log n)$. If the pseudo-disks are polygonal and of total complexity $O(n)$ then the weight of the separator improves to $O(\sqrt{n}\log n)$. Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based separator of weight $O(n{2/3}\log n)$. Visibility-restricted unit-disk graphs in a polygonal domain with $r$ reflex vertices admit a balanced clique-based separator of weight $O(\sqrt{n}+r\log(n/r))$, which is tight in the worst case. These results immediately imply sub-exponential algorithms for MAXIMUM INDEPENDENT SET (and, hence, VERTEX COVER), for FEEDBACK VERTEX SET, and for $q$-COLORING for constant $q$ in these graph classes.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.