Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast TreeSHAP: Accelerating SHAP Value Computation for Trees (2109.09847v3)

Published 20 Sep 2021 in cs.LG and stat.ML

Abstract: SHAP (SHapley Additive exPlanation) values are one of the leading tools for interpreting machine learning models, with strong theoretical guarantees (consistency, local accuracy) and a wide availability of implementations and use cases. Even though computing SHAP values takes exponential time in general, TreeSHAP takes polynomial time on tree-based models. While the speedup is significant, TreeSHAP can still dominate the computation time of industry-level machine learning solutions on datasets with millions or more entries, causing delays in post-hoc model diagnosis and interpretation service. In this paper we present two new algorithms, Fast TreeSHAP v1 and v2, designed to improve the computational efficiency of TreeSHAP for large datasets. We empirically find that Fast TreeSHAP v1 is 1.5x faster than TreeSHAP while keeping the memory cost unchanged. Similarly, Fast TreeSHAP v2 is 2.5x faster than TreeSHAP, at the cost of a slightly higher memory usage, thanks to the pre-computation of expensive TreeSHAP steps. We also show that Fast TreeSHAP v2 is well-suited for multi-time model interpretations, resulting in as high as 3x faster explanation of newly incoming samples.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)