Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Span Representation for Domain-adapted Coreference Resolution (2109.09811v1)

Published 20 Sep 2021 in cs.LG and cs.CL

Abstract: Recent work has shown fine-tuning neural coreference models can produce strong performance when adapting to different domains. However, at the same time, this can require a large amount of annotated target examples. In this work, we focus on supervised domain adaptation for clinical notes, proposing the use of concept knowledge to more efficiently adapt coreference models to a new domain. We develop methods to improve the span representations via (1) a retrofitting loss to incentivize span representations to satisfy a knowledge-based distance function and (2) a scaffolding loss to guide the recovery of knowledge from the span representation. By integrating these losses, our model is able to improve our baseline precision and F-1 score. In particular, we show that incorporating knowledge with end-to-end coreference models results in better performance on the most challenging, domain-specific spans.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.