Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BERT Has Uncommon Sense: Similarity Ranking for Word Sense BERTology (2109.09780v1)

Published 20 Sep 2021 in cs.CL

Abstract: An important question concerning contextualized word embedding (CWE) models like BERT is how well they can represent different word senses, especially those in the long tail of uncommon senses. Rather than build a WSD system as in previous work, we investigate contextualized embedding neighborhoods directly, formulating a query-by-example nearest neighbor retrieval task and examining ranking performance for words and senses in different frequency bands. In an evaluation on two English sense-annotated corpora, we find that several popular CWE models all outperform a random baseline even for proportionally rare senses, without explicit sense supervision. However, performance varies considerably even among models with similar architectures and pretraining regimes, with especially large differences for rare word senses, revealing that CWE models are not all created equal when it comes to approximating word senses in their native representations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.