Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Acoustic Echo Cancellation using Residual U-Nets (2109.09686v1)

Published 20 Sep 2021 in eess.AS and cs.LG

Abstract: This paper presents an acoustic echo canceler based on a U-Net convolutional neural network for single-talk and double-talk scenarios. U-Net networks have previously been used in the audio processing area for source separation problems because of their ability to reproduce the finest details of audio signals, but to our knowledge, this is the first time they have been used for acoustic echo cancellation (AEC). The U-Net hyperparameters have been optimized to obtain the best AEC performance, but using a reduced number of parameters to meet a latency restriction of 40 ms. The training and testing of our model have been carried out within the framework of the 'ICASSP 2021 AEC Challenge' organized by Microsoft. We have trained the optimized U-Net model with a synthetic dataset only (S-U-Net) and with a synthetic dataset and the single-talk set of a real dataset (SR-U-Net), both datasets were released for the challenge. The S-U-Net model presented better results for double-talk scenarios, thus their inferred near-end signals from the blind testset were submitted to the challenge. Our canceler ranked 12th among 17 teams, and 5th among 10 academia teams, obtaining an overall mean opinion score of 3.57.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube