Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Feature Correlation Aggregation: on the Path to Better Graph Neural Networks (2109.09300v1)

Published 20 Sep 2021 in cs.LG and cs.CV

Abstract: Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning. The core concept of GNNs is to find a representation by recursively aggregating the representations of a central node and those of its neighbors. The core concept of GNNs is to find a representation by recursively aggregating the representations of a central node and those of its neighbor, and its success has been demonstrated by many GNNs' designs. However, most of them only focus on using the first-order information between a node and its neighbors. In this paper, we introduce a central node permutation variant function through a frustratingly simple and innocent-looking modification to the core operation of a GNN, namely the Feature cOrrelation aGgregation (FOG) module which learns the second-order information from feature correlation between a node and its neighbors in the pipeline. By adding FOG into existing variants of GNNs, we empirically verify this second-order information complements the features generated by original GNNs across a broad set of benchmarks. A tangible boost in performance of the model is observed where the model surpasses previous state-of-the-art results by a significant margin while employing fewer parameters. (e.g., 33.116% improvement on a real-world molecular dataset using graph convolutional networks).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.