Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalized Translation and Scale Invariant Online Algorithm for Adversarial Multi-Armed Bandits (2109.09212v1)

Published 19 Sep 2021 in cs.LG and stat.ML

Abstract: We study the adversarial multi-armed bandit problem and create a completely online algorithmic framework that is invariant under arbitrary translations and scales of the arm losses. We study the expected performance of our algorithm against a generic competition class, which makes it applicable for a wide variety of problem scenarios. Our algorithm works from a universal prediction perspective and the performance measure used is the expected regret against arbitrary arm selection sequences, which is the difference between our losses and a competing loss sequence. The competition class can be designed to include fixed arm selections, switching bandits, contextual bandits, or any other competition of interest. The sequences in the competition class are generally determined by the specific application at hand and should be designed accordingly. Our algorithm neither uses nor needs any preliminary information about the loss sequences and is completely online. Its performance bounds are the second order bounds in terms of sum of the squared losses, where any affine transform of the losses has no effect on the normalized regret.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.