Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

JEM++: Improved Techniques for Training JEM (2109.09032v2)

Published 19 Sep 2021 in cs.LG

Abstract: Joint Energy-based Model (JEM) is a recently proposed hybrid model that retains strong discriminative power of modern CNN classifiers, while generating samples rivaling the quality of GAN-based approaches. In this paper, we propose a variety of new training procedures and architecture features to improve JEM's accuracy, training stability, and speed altogether. 1) We propose a proximal SGLD to generate samples in the proximity of samples from the previous step, which improves the stability. 2) We further treat the approximate maximum likelihood learning of EBM as a multi-step differential game, and extend the YOPO framework to cut out redundant calculations during backpropagation, which accelerates the training substantially. 3) Rather than initializing SGLD chain from random noise, we introduce a new informative initialization that samples from a distribution estimated from training data. 4) This informative initialization allows us to enable batch normalization in JEM, which further releases the power of modern CNN architectures for hybrid modeling. Code: https://github.com/sndnyang/JEMPP

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com