Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Domain Adaptation for Semantic Segmentation via Low-level Edge Information Transfer (2109.08912v1)

Published 18 Sep 2021 in cs.CV

Abstract: Unsupervised domain adaptation for semantic segmentation aims to make models trained on synthetic data (source domain) adapt to real images (target domain). Previous feature-level adversarial learning methods only consider adapting models on the high-level semantic features. However, the large domain gap between source and target domains in the high-level semantic features makes accurate adaptation difficult. In this paper, we present the first attempt at explicitly using low-level edge information, which has a small inter-domain gap, to guide the transfer of semantic information. To this end, a semantic-edge domain adaptation architecture is proposed, which uses an independent edge stream to process edge information, thereby generating high-quality semantic boundaries over the target domain. Then, an edge consistency loss is presented to align target semantic predictions with produced semantic boundaries. Moreover, we further propose two entropy reweighting methods for semantic adversarial learning and self-supervised learning, respectively, which can further enhance the adaptation performance of our architecture. Comprehensive experiments on two UDA benchmark datasets demonstrate the superiority of our architecture compared with state-of-the-art methods.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.