Papers
Topics
Authors
Recent
2000 character limit reached

Density-based Curriculum for Multi-goal Reinforcement Learning with Sparse Rewards (2109.08903v2)

Published 18 Sep 2021 in cs.RO

Abstract: Multi-goal reinforcement learning (RL) aims to qualify the agent to accomplish multi-goal tasks, which is of great importance in learning scalable robotic manipulation skills. However, reward engineering always requires strenuous efforts in multi-goal RL. Moreover, it will introduce inevitable bias causing the suboptimality of the final policy. The sparse reward provides a simple yet efficient way to overcome such limits. Nevertheless, it harms the exploration efficiency and even hinders the policy from convergence. In this paper, we propose a density-based curriculum learning method for efficient exploration with sparse rewards and better generalization to desired goal distribution. Intuitively, our method encourages the robot to gradually broaden the frontier of its ability along the directions to cover the entire desired goal space as much and quickly as possible. To further improve data efficiency and generality, we augment the goals and transitions within the allowed region during training. Finally, We evaluate our method on diversified variants of benchmark manipulation tasks that are challenging for existing methods. Empirical results show that our method outperforms the state-of-the-art baselines in terms of both data efficiency and success rate.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.