Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Robust and Efficient Multi-Scale Seasonal-Trend Decomposition (2109.08800v1)

Published 18 Sep 2021 in stat.AP, cs.LG, and eess.SP

Abstract: Many real-world time series exhibit multiple seasonality with different lengths. The removal of seasonal components is crucial in numerous applications of time series, including forecasting and anomaly detection. However, many seasonal-trend decomposition algorithms suffer from high computational cost and require a large amount of data when multiple seasonal components exist, especially when the periodic length is long. In this paper, we propose a general and efficient multi-scale seasonal-trend decomposition algorithm for time series with multiple seasonality. We first down-sample the original time series onto a lower resolution, and then convert it to a time series with single seasonality. Thus, existing seasonal-trend decomposition algorithms can be applied directly to obtain the rough estimates of trend and the seasonal component corresponding to the longer periodic length. By considering the relationship between different resolutions, we formulate the recovery of different components on the high resolution as an optimization problem, which is solved efficiently by our alternative direction multiplier method (ADMM) based algorithm. Our experimental results demonstrate the accurate decomposition results with significantly improved efficiency.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.