Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Relating Neural Text Degeneration to Exposure Bias (2109.08705v1)

Published 17 Sep 2021 in cs.CL and cs.LG

Abstract: This work focuses on relating two mysteries in neural-based text generation: exposure bias, and text degeneration. Despite the long time since exposure bias was mentioned and the numerous studies for its remedy, to our knowledge, its impact on text generation has not yet been verified. Text degeneration is a problem that the widely-used pre-trained LLM GPT-2 was recently found to suffer from (Holtzman et al., 2020). Motivated by the unknown causation of the text degeneration, in this paper we attempt to relate these two mysteries. Specifically, we first qualitatively quantitatively identify mistakes made before text degeneration occurs. Then we investigate the significance of the mistakes by inspecting the hidden states in GPT-2. Our results show that text degeneration is likely to be partly caused by exposure bias. We also study the self-reinforcing mechanism of text degeneration, explaining why the mistakes amplify. In sum, our study provides a more concrete foundation for further investigation on exposure bias and text degeneration problems.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.