Papers
Topics
Authors
Recent
2000 character limit reached

Filtration and canonical completeness for continuous modal mu-calculi (2109.08321v1)

Published 17 Sep 2021 in cs.LO

Abstract: The continuous modal mu-calculus is a fragment of the modal mu-calculus, where the application of fixpoint operators is restricted to formulas whose functional interpretation is Scott-continuous, rather than merely monotone. By game-theoretic means, we show that this relatively expressive fragment still allows two important techniques of basic modal logic, which notoriously fail for the full modal mu-calculus: filtration and canonical models. In particular, we show that the Filtration Theorem holds for formulas in the language of the continuous modal mu-calculus. As a consequence we obtain the finite model property over a wide range of model classes. Moreover, we show that if a basic modal logic L is canonical and the class of L-frames admits filtration, then the logic obtained by adding continuous fixpoint operators to L is sound and complete with respect to the class of L-frames. This generalises recent results on a strictly weaker fragment of the modal mu-calculus, viz. PDL.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.