Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the size of disjunctive formulas in the $μ$-calculus (2109.08310v1)

Published 17 Sep 2021 in cs.LO

Abstract: A key result in the theory of the modal mu-calculus is the disjunctive normal form theorem by Janin & Walukiewicz, stating that every mu-calculus formula is semantically equivalent to a so-called disjunctive formula. These disjunctive formulas have good computational properties and play a pivotal role in the theory of the modal mu-calculus. It is therefore an interesting question what the best normalisation procedure is for rewriting a formula into an equivalent disjunctive formula of minimal size. The best constructions that are known from the literature are automata-theoretic in nature and consist of a guarded transformation, i.e., the constructing of an equivalent guarded alternating automaton from a mu-calculus formula, followed by a Simulation Theorem stating that any such alternating automaton can be transformed into an equivalent non-deterministic one. Both of these transformations are exponential constructions, making the best normalisation procedure doubly exponential. Our key contribution presented here shows that the two parts of the normalisation procedure can be integrated, leading to a procedure that is single-exponential in the closure size of the formula.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.