Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Non-hyperbolicity at large scales of a high-dimensional chaotic system (2109.08080v3)

Published 16 Sep 2021 in nlin.CD, cs.NA, math-ph, math.DS, math.MP, and math.NA

Abstract: The dynamics of many important high-dimensional dynamical systems are both chaotic and complex, meaning that strong reducing hypotheses are required to understand the dynamics. The highly influential chaotic hypothesis of Gallavotti and Cohen states that the large-scale dynamics of high-dimensional systems are effectively uniformly hyperbolic, which implies many felicitous statistical properties. We obtain direct and reliable numerical evidence, contrary to the chaotic hypothesis, of the existence of non-hyperbolic large-scale dynamical structures in a mean-field coupled system. To do this we reduce the system to its thermodynamic limit, which we approximate numerically with a Chebyshev basis transfer operator discretisation. This enables us to obtain a high precision estimate of a homoclinic tangency, implying a failure of uniform hyperbolicity. Robust non-hyperbolic behaviour is expected under perturbation. As a result, the chaotic hypothesis should not be {\it a priori} assumed to hold in all systems, and a better understanding of the domain of its validity is required.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)