Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sublinear Time Eigenvalue Approximation via Random Sampling (2109.07647v5)

Published 16 Sep 2021 in cs.DS, cs.NA, and math.NA

Abstract: We study the problem of approximating the eigenspectrum of a symmetric matrix $\mathbf A \in \mathbb{R}{n \times n}$ with bounded entries (i.e., $|\mathbf A|_{\infty} \leq 1$). We present a simple sublinear time algorithm that approximates all eigenvalues of $\mathbf{A}$ up to additive error $\pm \epsilon n$ using those of a randomly sampled $\tilde {O}\left (\frac{\log3 n}{\epsilon3}\right ) \times \tilde O\left (\frac{\log3 n}{\epsilon3}\right )$ principal submatrix. Our result can be viewed as a concentration bound on the complete eigenspectrum of a random submatrix, significantly extending known bounds on just the singular values (the magnitudes of the eigenvalues). We give improved error bounds of $\pm \epsilon \sqrt{\text{nnz}(\mathbf{A})}$ and $\pm \epsilon |\mathbf A|_F$ when the rows of $\mathbf A$ can be sampled with probabilities proportional to their sparsities or their squared $\ell_2$ norms respectively. Here $\text{nnz}(\mathbf{A})$ is the number of non-zero entries in $\mathbf{A}$ and $|\mathbf A|_F$ is its Frobenius norm. Even for the strictly easier problems of approximating the singular values or testing the existence of large negative eigenvalues (Bakshi, Chepurko, and Jayaram, FOCS '20), our results are the first that take advantage of non-uniform sampling to give improved error bounds. From a technical perspective, our results require several new eigenvalue concentration and perturbation bounds for matrices with bounded entries. Our non-uniform sampling bounds require a new algorithmic approach, which judiciously zeroes out entries of a randomly sampled submatrix to reduce variance, before computing the eigenvalues of that submatrix as estimates for those of $\mathbf A$. We complement our theoretical results with numerical simulations, which demonstrate the effectiveness of our algorithms in practice.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.