Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

BacHMMachine: An Interpretable and Scalable Model for Algorithmic Harmonization for Four-part Baroque Chorales (2109.07623v2)

Published 15 Sep 2021 in cs.SD, cs.LG, eess.AS, and stat.ML

Abstract: Algorithmic harmonization - the automated harmonization of a musical piece given its melodic line - is a challenging problem that has garnered much interest from both music theorists and computer scientists. One genre of particular interest is the four-part Baroque chorales of J.S. Bach. Methods for algorithmic chorale harmonization typically adopt a black-box, "data-driven" approach: they do not explicitly integrate principles from music theory but rely on a complex learning model trained with a large amount of chorale data. We propose instead a new harmonization model, called BacHMMachine, which employs a "theory-driven" framework guided by music composition principles, along with a "data-driven" model for learning compositional features within this framework. As its name suggests, BacHMMachine uses a novel Hidden Markov Model based on key and chord transitions, providing a probabilistic framework for learning key modulations and chordal progressions from a given melodic line. This allows for the generation of creative, yet musically coherent chorale harmonizations; integrating compositional principles allows for a much simpler model that results in vast decreases in computational burden and greater interpretability compared to state-of-the-art algorithmic harmonization methods, at no penalty to quality of harmonization or musicality. We demonstrate this improvement via comprehensive experiments and Turing tests comparing BacHMMachine to existing methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.