Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sign-MAML: Efficient Model-Agnostic Meta-Learning by SignSGD (2109.07497v2)

Published 15 Sep 2021 in cs.LG, cs.AI, and cs.CV

Abstract: We propose a new computationally-efficient first-order algorithm for Model-Agnostic Meta-Learning (MAML). The key enabling technique is to interpret MAML as a bilevel optimization (BLO) problem and leverage the sign-based SGD(signSGD) as a lower-level optimizer of BLO. We show that MAML, through the lens of signSGD-oriented BLO, naturally yields an alternating optimization scheme that just requires first-order gradients of a learned meta-model. We term the resulting MAML algorithm Sign-MAML. Compared to the conventional first-order MAML (FO-MAML) algorithm, Sign-MAML is theoretically-grounded as it does not impose any assumption on the absence of second-order derivatives during meta training. In practice, we show that Sign-MAML outperforms FO-MAML in various few-shot image classification tasks, and compared to MAML, it achieves a much more graceful tradeoff between classification accuracy and computation efficiency.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube