Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation (2109.07222v2)

Published 15 Sep 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Pre-trained LLMs have shown remarkable results on various NLP tasks. Nevertheless, due to their bulky size and slow inference speed, it is hard to deploy them on edge devices. In this paper, we have a critical insight that improving the feed-forward network (FFN) in BERT has a higher gain than improving the multi-head attention (MHA) since the computational cost of FFN is 2$\sim$3 times larger than MHA. Hence, to compact BERT, we are devoted to designing efficient FFN as opposed to previous works that pay attention to MHA. Since FFN comprises a multilayer perceptron (MLP) that is essential in BERT optimization, we further design a thorough search space towards an advanced MLP and perform a coarse-to-fine mechanism to search for an efficient BERT architecture. Moreover, to accelerate searching and enhance model transferability, we employ a novel warm-up knowledge distillation strategy at each search stage. Extensive experiments show our searched EfficientBERT is 6.9$\times$ smaller and 4.4$\times$ faster than BERT$\rm_{BASE}$, and has competitive performances on GLUE and SQuAD Benchmarks. Concretely, EfficientBERT attains a 77.7 average score on GLUE \emph{test}, 0.7 higher than MobileBERT$\rm_{TINY}$, and achieves an 85.3/74.5 F1 score on SQuAD v1.1/v2.0 \emph{dev}, 3.2/2.7 higher than TinyBERT$_4$ even without data augmentation. The code is released at https://github.com/cheneydon/efficient-bert.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.