Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multiagent Multimodal Categorization for Symbol Emergence: Emergent Communication via Interpersonal Cross-modal Inference (2109.07194v1)

Published 15 Sep 2021 in cs.AI and cs.CL

Abstract: This paper describes a computational model of multiagent multimodal categorization that realizes emergent communication. We clarify whether the computational model can reproduce the following functions in a symbol emergence system, comprising two agents with different sensory modalities playing a naming game. (1) Function for forming a shared lexical system that comprises perceptual categories and corresponding signs, formed by agents through individual learning and semiotic communication between agents. (2) Function to improve the categorization accuracy in an agent via semiotic communication with another agent, even when some sensory modalities of each agent are missing. (3) Function that an agent infers unobserved sensory information based on a sign sampled from another agent in the same manner as cross-modal inference. We propose an interpersonal multimodal Dirichlet mixture (Inter-MDM), which is derived by dividing an integrative probabilistic generative model, which is obtained by integrating two Dirichlet mixtures (DMs). The Markov chain Monte Carlo algorithm realizes emergent communication. The experimental results demonstrated that Inter-MDM enables agents to form multimodal categories and appropriately share signs between agents. It is shown that emergent communication improves categorization accuracy, even when some sensory modalities are missing. Inter-MDM enables an agent to predict unobserved information based on a shared sign.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube